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Atomic coordinates in the Worldwide Protein Data Bank (wwPDB) are

generally reported to greater precision than the experimental structure

determinations have actually achieved. By using information theory and data

compression to study the compressibility of protein atomic coordinates, it is

possible to quantify the amount of randomness in the coordinate data and

thereby to determine the realistic precision of the reported coordinates. On

average, the value of each C� coordinate in a set of selected protein structures

solved at a variety of resolutions is good to about 0.1 Å.

1. Introduction

Worldwide Protein Data Bank (wwPDB) entries for protein struc-

tures report coordinate data in ångström units (Å) to three places

after the decimal point. There is consensus that for most, if not all,

protein structures, the stated precision is significantly greater than

can be inferred from X-ray crystallography or any other structure-

determination method. However, estimating quantitatively the

precision of protein coordinate data continues to be a thorny problem

(Luzzati, 1952; Read, 1990; Murshudov & Dodson, 1997; Cruick-

shank, 1999; Ten Eyck, 2003).

For protein crystal structures, the distribution of the B factors gives

a qualitative index of the precision of the atomic coordinates. Classic

papers by Luzzati (1952) and Read (1990) produce statistical distri-

butions of coordinate errors based on R factors. The work of Ten

Eyck (2003) comes perhaps closest to the information that one wants,

in allowing assignment of errors to individual atoms; in particular, in

identifying where a model is inconsistent with the data. For NMR,

Nabuurs et al. (2003) have studied the root-mean-square deviation

of structures consistent with satisfying the experimental distance

constraints.

All of these methods depend on analysis of structures together

with the experimental data on which they are based.

In this paper, we present a different approach, in which we attempt

to derive the precision of the C� atoms of a protein data set without

reference to experimental data. The method is therefore applicable,

without change, to structures determined experimentally by X-ray

crystallography, NMR or electron microscopy, and structure predic-

tion as well.

Stating protein coordinates to a higher precision than is derivable

from experiment (or theory) introduces randomness into their

reported digits. Information theory and data compression provide a

rigorous way to quantify the randomness in any data, and can thereby

evaluate quantitatively the true precision of the structure determi-

nations.

Intuitively, compressibility and predictability go hand in hand. That

is, the more predictable any data are, the more compressible they

become (Shannon, 1948; Solomonoff, 1960; Kolmogorov, 1965).

Conversely, the more random any data are, the less compressible.

Therefore, an approach to quantify the extent of randomness in PDB

entries is the investigation of the compressibility of the coordinate
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In information theory, the framework of minimum message length

encoding (Wallace & Boulton, 1968; Wallace, 2005) gives a quanti-

tative estimate of the compressibility of data. This framework relies

on explaining any observed set of data as a two-part message. The first

part describes a ‘theory’ (or ‘signal’) implicit in the observed data.

The second part provides the ‘details’ (or ‘noise’) of the data not

explained by the theory. This two-part message is encoded in the

shortest possible way from which the original data can be recovered

exactly. It can be observed from this framework that the more

random the data are, the longer the encoded message becomes,

dominated by the explanation of noise in the second part of the

message. Conversely, the more predictable the data are, the more

compressible is the encoded message, as the second part becomes

extremely concise.

2. Compression of protein Ca coordinate data

Our measure of the compressibility of the data reported here

depends on our recently introduced information-based technique

to infer a dictionary of recurrent protein fragments for an entire

collection of protein structures representative of the nonredundant

wwPDB (Konagurthu et al., 2013). This approach relies on the

Bayesian method of minimum message length inference (Wallace &

Boulton, 1968; Wallace, 2005). In our application of this method

(Konagurthu et al., 2013), the optimal fragment dictionary is defined

as that which permits the most concise explanation (technically, the

shortest lossless encoding) of the coordinates of the source structures

in the collection.

This dictionary allows the efficient, lossless representation (or

encoding) of the positions of the C� atoms in any given protein

coordinate set. By lossless, we mean that the encoded coordinates

should be decodable to the same precision at which they were

encoded: the encoded digits should be reproduced literally; that is,

exactly, not approximately. In the work of Konagurthu et al. (2013),

we used the full precision, 0.001 Å, reported in the wwPDB entries.

How do we use the dictionary to encode the C� coordinates of a set

of protein structures? The optimal lossless encoding of any particular

protein structure comprises (i) a dissection (or segmentation) – that

is, a designation of successive non-overlapping regions in the protein

structures that match the assigned dictionary fragments – and (ii) a

statement of spatial deviations (or corrections) that should be applied

to the coordinates of each assigned dictionary fragment so that the C�

coordinates of the actual structure can be recovered losslessly to the

originally stated precision. See Konagurthu et al. (2013) for the

technical details of compressed lossless encoding of C� atoms.

This compressed encoding contrasts with a ‘null model’ encoding,

in which the coordinates of structures are stated raw (or as is, without

compression). We note that when encoding protein structures using

the dictionary fragments, the regions that do not efficiently encode

using the dictionary are stated using the null model; in these cases, the

spatial deviations bear the entire weight of the description (Kona-

gurthu et al., 2013). Within the overall dictionary encoding, these

regions are effectively uncompressed.

Figure 1
Comparison of the average number of bits required to state each C� coordinate using null and dictionary models, with varying values of the PSD between 0.001 and 0.5 Å. (a)
Plot corresponding to all 8992 source structures from the Protein Data Bank. (b) Plot corresponding to a subset of high-resolution (better than 1.7 Å resolution) structures in
the collection. (c) Plot corresponding to a subset of low-resolution (worse than 2.8 Å resolution) structures in the collection.



It is possible to encode the coordinates at different statements of

precision. For, given any data reported to some precision we can

arbitrarily restate them to lower precision. For example, truncating or

rounding 654.123 to 654.12 decreases the precision from 0.001 to 0.01.

By examining the compressibility of the coordinate data as a function

of the expressed precision, we can determine at what precision the

data lose compressibility and, therefore, non-randomness. This

reveals the true information content of the data, as opposed to the

putative significance implied by the stated precision.

To implement these ideas, we define the ‘precision of statement of

data’ (PSD) to mean the precision to which each individual x, y or z

coordinate of protein structures is reported. Three places after the

decimal point corresponds to a PSD of 0.001 Å. Although it is

convenient to think of the PSD as discrete in terms of numbers of

decimal digits, the PSD is a continuous variable1. A smaller value of

the PSD implies a more precise statement of coordinates compared

with a larger value of the PSD.

Our information-theoretic measure of compressibility thereby

provides a way to measure quantitatively the precision of coordinate

data. Suppose, for the sake of argument, that the first two figures after

the decimal point reflect experimental precision, but the third figure

after the decimal point is effectively random. The third digit is then

by definition incompressible. The dictionary model message is the

compressed statement of the coordinate data; the null model message

encoding the same data corresponds to an uncompressed statement

of the same information. Dictionary encoding the coordinate data

(that is, compressing them) will not produce a more concise message

than the null model, at least with respect to the random third digit

after the decimal.

To apply these ideas, we compared the lengths of the null and

dictionary model messages for the C� coordinates of a collection of

protein structures as a function of the PSD. A lower message length

implies greater compression. The dictionary and null model message

lengths are measured in bits. We measure bits per residue (BpR)

for each of the two models, measuring the average number of bits

required to encode the C� coordinates of all residues in the collection

of protein structures under that model. The difference between the

message lengths of null-model encoding and dictionary encoding

(�ML), as function of the PSD, reflects the nonrandomness of

successive digits of the data.

3. Results and conclusions

We considered a collection of 8992 experimentally determined

structures from the wwPDB which were dissimilar in amino-acid

sequence to avoid experimental and selection bias. Fig. 1(a) shows

both compressed (dictionary-based) and uncompressed (null model-

based) message lengths for varying values of the PSD. Notice that

while the BpR for both models diminishes when the PSD is increased

in value from 0.001 Å upwards, their average difference in message

lengths, �ML, remains roughly constant for PSD values in the range

0.001–0.075 Å. Upon further increasing the PSD from 0.075 to 0.1 Å,

the difference starts to decrease in comparison.

We therefore conclude that the last place value after the decimal

point in the C� coordinate data in our source set is random because

the dictionary model does not find any compressible information in

these digits.

Our method reports the average precision of the C� coordinates in

the chosen set of proteins. Clearly, there must be a large subset of C�

atoms for which the precision is better than the average and, corre-

spondingly, another large subset for which the precision is worse. In

many cases, the region around the active site is the best determined

portion of a protein, and this is also the region of greatest interest in

interpreting function. Therefore, our results should not be taken to

engender undue pessimism for structural studies.

Notice that varying the PSD from 0.001 to 0.01 Å changes the BpR

for the null model from 37.97 to 28.07 bits, a drop of roughly 10 bits.

For the dictionary model, the BpR changes by approximately the

same amount, from 36.56 to 26.36 bits over the same PSD values,

again a drop of about 10 bits, leaving �ML roughly constant. Why 10

bits? It takes log2(10) = 3.32 bits to encode, optimally, random inte-

gers in the range 0–9. Therefore, to encode three random integers in

the range 0–9 (for the x, y and z coordinates) takes 3 � log2(10) ’

10 bits.

The constancy of �ML at a PSD of up to (arguably) 0.1 Å suggests

that, on average, the experimental measurement precision for each

x, y and z component of the C� coordinates is no better than 0.1 Å.

�ML diminishes for values of the PSD beyond 0.1 Å. This suggests

that beyond 0.1 Å the dictionary model loses compression because

valid compressible information is being discarded at larger values of

the PSD, and hence the dictionary model converges to the null model

message length in the absence of compressible information.

We studied separately the dependence of the PSD on message

lengths for high-resolution and low-resolution data sets (as defined in

the caption to Fig. 1). As expected, the precision of the coordinates

varies with the resolution of the X-ray structure determinations.

Figs. 1(b) and 1(c) show that the coordinates of the high-resolution

data set retain compressibility to a PSD of 0.075 Å, but that for the

low-resolution structures the data lose compressibility at a PSD of

>0.25 Å. Interestingly, the gap between null and dictionary models

for the high-resolution data set is narrower than that for the low-

resolution data set. This is the result of a�1 bit per residue saving for

the null model with respect to the dictionary model arising from the

fact that the distance between successive C� coordinates is more

tightly centered around the mean of 3.8 Å for high-resolution

structures than for low-resolution structures, a fact which the null

model exploits. That high-resolution structures are usually more

precisely determined than low-resolution structures comes as no

surprise, but our method permits a quantitative description of the

difference.
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1 A traditional ‘rule of thumb’: number of significant figures ’ log10(relative
error) = pRE (in analogy with pH).
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